

Detecting Humans in Crowded Scenes

ACM Multimedia 2007, Mikel Rodriguez and Mubarak Shah

Approach overview

 Learn the spatial distribution of local shapes to find human locations.

 Use global shape information to refine initial hypotheses.

Learning local and global shape

Learning Posture Clusters (global shape)

Intuition: Use a set of learned posture clusters to initialize segmentations.

Initial segmentation contours can them be evolved.

Learning Posture Clusters

Learning Posture Clusters

Learning Posture Clusters

Shape Context

Learning Posture Clusters (global shape)

Cluster center

- Posture signatures are clustered using K-means.
- The contour of each cluster center is stored.
 - Represent typical global shapes present in the data.

Local shape codebook

Local shape codebook

Local shape distribution

Learn the spatial distribution of local shapes.

Local shape distribution

Learn the spatial distribution of local shapes.

Global

posture cluster

. . .

. . .

Centroid

Vote

. . .

. . .

Local shape

- Instances of local shape codebook vote for locations and postures of humans in the scene.
- We search for consisted hypothesis by finding maximums in a voting space.

Detection

- Contours of foreground blobs are sampled.
- Centroid votes are cast
- Maximums in voting space correspond to human locations

Segmentation

Given the centroid locations of humans in the scene:
We initialize segmentations using the learned posture clusters.

Experiments

- Our testing database consisted of a wide range of scenes, totaling 34,100 frames in size and contained a total of 312 humans for which the torso is visible.
- The size of the humans across the video sequences averaged 42x65 pixels.
- □ Training set sizes:
 - Run1: 700 frames
 - Run 2: 1,000 frames
 - Run 3: 1,100 frames

Experiments

Experiments

Experiments and Results

Recognition performance based on a range of training set sizes.

Conclusion

- Local shape distribution represents a powerful cue which can be integrated into existing lines of research.
- Given a set of initial hypothesis, global shape clusters aid the segmentation process.
- □ Encouraging results given the difficulty of the data.

